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SUMMARY 

A general theory of aeroacoustics of homentropic fluid media 
is presented. The definition of sound (unsteady compressible flow) 
and the concept of Bernoulli enthalpy are the fundamental building 
blocks of the theory. It is proved that a Coriolis acceleration 
is necessary to obtain a transfer of energy from the vertical to 
the acoustic mode. The Liepmann pendulum is used to illustrate the 
physical mechanism of noise production by a fluid flow. The basic 
theory is compared with several known aeroacoustic theories. With 
the Lighthill hypothesis,the theory is formally equivalent to the 
Lighthill or Ribner theory in the low Mach number limit. The 
present theory is complete in that all of the basic aeroacoustic 
interactionscan be investigated, in particular, the excitation of a 
fluid flow by sound. 

The interaction of sound with vortex flows is studied in de- 
tail. A formula for vortex core scattering is derived with a plane 
wave analysis. A general theory of acoustic interaction with mult- 
iple weakly interacting line vortices is presented. The theory is 
applied to estimate the interference noise between an engine and an 
aircraft vortex wake. For the DC-9 in a standard take-off config- 
uration the interference noise is estimated to be 3 or 4 DB at the 
engine peak Strouhal number, for a ground plane observer. 

The noise produced by a corotating vortex pair is calculated 
with the present theory. For low Mach number (M < 0.1) the sound 
power varies as MT in accordance with known results for compact 
2-D flows. For 0.1 < M < 0.3, the power radiated is 10 to 15 DB 
less than the compact M7 law, even though the basic source is 
still quadrupole. For M> 0.3, higher order multipoles contribute 
to the sound power. 

An estimate of jet impingement noise is given. It is shown 
that the acoustic overpressures are a result of acceleration of tur- 
bulent eddies through the curved flow near the impingement point. The 
conventional shear noise term is amplified by a factor of 3 that 
translates into a factor of 9 (" 10 DB) in the sound power. Our 
estimates are in agreement with the order of magnitude of recent 



measurements. The corotating vortex model or its extension to ring 
vortices is suggested as a dynamic model of the jet impingement 
problem. 

The phenomenon of fluid flow excitation by sound is investi- 
gated. When plane waves impinge on the corotating vortex pair, 
resonant excitation or attenuation is possible. The coupling is a 
maximum when the acoustic excitation frequency is approximately 
twice the rotational frequency of the pair. The wave length can be 
quite large compared to the separation of the vortices. Based on 
our simple model,a qualitative explanation of various experimental 
observations with excited jets is offered. 

I. INTRODUCTION 

In Ref. l,we presented a comprehensive theory of aero- 
acoustics that departs in several fundamental ways from the more 
familiar theories of Lighthill (Ref. 
(Ref. 4). 

21, Ribner (Ref. 3) and Lilley 
Since the original paper was presented, numerous problems 

have been solved (see Ref. 5 and work reported herein). Based on 
these results and discussions with various people involved in aero- 
acoustics research,we have been able to modify and polish the ori- 
ginal concepts. The basic theory and its application to several 
problems of technological importance is the subject of this report. 

In Section II, we give a detailed derivation of the theory for 
the case of constant entropy (homentropic) flows. The basic con- 
cepts are most easily presented for this case and the resulting 
theory is directly applicable to a variety of important problems. 
Three basic questions of aeroacoustics are posed and discussed in 
the light of the present work and previous theories: 

1. How is sound produced by a "primary" fluid flow? 

32: 
How is sound processed by a flow? 
How does sound affect a primary flow? 

In Section III, we consider in detail the question of how sound 
is processed by vortex flows. First, we investigate the importance 
of vortex core structure by considering the scattering of plane waves 
from a single vortex. A general formula for the core 
derived. 

scattering is 
A Lagrangian approach is used to calculate the scattering 

of an arbitrary sound field from a set of discrete weakly-interacting 
line vortices. The special case of a line acoustic source is cal- 
culated in detail and used to estimate the scattering of engine noise 
from an aircraft vortex wake. Specific application is made to the 
DC-9 where it is estimated that acoustic overpressures of 3 or 4 DB 
can result from the interference between the engine and wake. 

In Section IV, we consider the production of sound by vortex 
flows. First, we consider the model problem of a corotating vortex 
pair and calculate the effects of noncompactness on the sound 

2 



radiated. Next, we consider the problem of jet impingement noise. 
The shear noise source term is calculated for a turbulent stagna- 
tion point flow. It is estimated that the convective acceleration 
of turbulent eddies Tn the curved stagnation point flow can pro-. 
duce some 10 DB more noise than a free jet. It is suggested that 
the spinning vortex pair (or vortex rings) could be used to model 
the impingement problem. 

In Section V, we consider the difficult question of how sound 
affects a fluid flow. The interaction of sound with the spinning 
vortex pair is used to illustrate the basic phenomena. It is shown 
that the vortex motion can be excited or deexcited by sound at the 
acoustic frequency of the vortex (twice the rotational frequency). 
The results are in qualitative agreement with experimental results 
on excited jets. 

NOMENCLATURE 

a 

A 

Am 

Bm 

cn 

DB 

E 

F(R,ct) 

h 

H 

H 

H;')(z) 

H(x) 

LS,S 

isentropic sound speed 

Lagrange coordinate of line vortex, see Eq. (3.43) 

see Eq. (3.64) 

see Eq. (3.65) 

amplitude of multipoles in vortex noise, see Eqs. 
(4.23) and (4.25) 

decibel 

kinetic energy of primary flow, see Eq. (2.31) 

source function for corotating vortex pair, see 
Eq. (4.11) and Fig. 4.2 

enthalpy 

h + v2/2 

Bernoulli Enthalpy, see Eq. (2.19) 

Hankel function of first kind 

HeaviSide Step fUnCtiOn 

Cartesian unit vectors, see Fig. 3.1 
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I 

Jn 
k 

M 

P 

P 

rcsre3 b/3 

-t 
5 
rO 

r,e 

R 

S 

s,P> 

S,(R) 

t 
-t 
U 

ii +; 

2 
+ 
va 
V (r) 
-t X 

x,y 
'n 

c1 

Y 

acoustic intensity 

Bessel function Of the first kind 

wave number, ~IT/A 

Mach number 

pressure 

sound power, see Eq. (4.29) 

length scale of solid body, exponential and Betz 
cores, see Eq. (3.38) 

unit vector 

see Fig. 4.1 

plane polar coordinates 

normalized radius vector, see Eq. (4.8) 

scattering factor, see Eq. (3.27) 

core scattering factor, see Eq. (3.24) 

see Eqs. (4.18) and (4.19) 

time 

nonacoustic velocity 

mean and turbulent velocity component in a turbulent 
flow 

velocity vector 

acoustic particle velocity 

velocity distribution in vortex, see Eq. (3.1) 

position vector 

see Eq. (5.7) 

Bessel function of the second kind 

see Eq. (4.8) 

r/21~ modified vortex strength (also ratio of specific 
heats) 
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r 

ri jk 
6(Y) 

&h,b,6p 

E 

K 

x 
-. 

% 
V 

P 

T,T 

9 

X 

w 
-t w 

II, 

R 

Q(r) 

total vortex strength, see Eq. (3.25) 

Christoffel symbol, see Eq. (4.38) 

Delta function 

perturbation enthalpy, pressure, density 

see Eq. (5. 9) 

kro , see Eq. (5.6) 

wave length of sound, 2r/k 

vortex acoustic length scale, see Eq. (3.31) 

kinematic viscosity 

density 

dimensionless time 

acoustic potential 

vortex potential 

radian frequency 

curl f , vorticity 

streamfunction 

angular velocity of corotating vortex pair 

vortex core vorticity distribution 

Special Notation 

curl curl operation 

div divergence operation 

D 
Dt substantive derivative $& + ?-grad 

D 
Dt 

& + t-grad 

grad gradient operation 

<(I' time average of any quantity q 
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Tm 
Re 

Im 

V2 

absolute value of vector ;; 

see Eq. (3.63) 

real part of complex quantity 

imaginary part of complex quantity 

Laplace operator 
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II. ACOUSTIC THEORY OF HOMENTROPIC FLOWS 

A. ASSUMPTIONS AND BASIC EQUATIONS 

We consider the class of aeroacoustic problems for which we 
can justifiably ignore real fluid properties that lead to signif- 
icant entropy variations; e.g., the generation of heat by viscous 
dissipation of mechanical turbulent energy and the production of 
entropy by internal conduction of heat or by nonadiabatic processes 
at a boundary. Clearly, our assumption of homentropic flow imposes 
an upper bound on the Mach number and temperature gradients in the 
flow. Generally speaking we will be concerned with low to moderate 
subsonic Mach numbers and the interaction between two of the funda- 
mental modes of energy transport in a fluid (Ref.. 6): 

1) The acoustic mode 
2) The vertical mode 

Our resulting theory is directly applicable to the study of sound 
interaction with and production of sound by strong vertical flows. 
The specific application to the scattering of sound by aircraft 
vortex wakes and the production of sound by an impinging jet is 
considered in Sections III and IV. The extension of the basic 
theory to high Mach number nonadiabatic flows will be considered 
elsewhere. 

With the assumption of uniform entropy, the enthalpy, pressure 
and density variations are proportional; i.e., 

6h = 6p = & ‘&p 
P P (2.1) 

where P is the density and a is the local isentropic speed of 
sound. For a perfect gas with constant specific heats, we have, 
in particular 

a2 = (y-l)h = y (Perfect Gas) (2.2) 

The equations of homentropic fluid motion are most easily written 
in terms of the enthalpy and velocity: 

+$+di&=O 
a 

D; -= Dt -grad h + vV2G 

(2.3) 

where we retain the viscous term in the momentum equation (2.4) 
and assume that the kinematic coefficient of viscosity is a con- 
stant. In general, the variations in all background or mean 
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thermodynamic and transport properties are of order M2 and will 
be neglected in much of the following work. For the moment we only 
consider the viscosity to be constant. 

B. A KINEMATIC DEFINITION OF SOUND 

To develop a rational theory of aeroacoustics,it is essential 
to adopt a definition of "sound." Goldstein (Ref. 7) has made the 
point that many of the arguments that have raged in the modern de- 
velopment of the subject over what is the "source" of sound are 
rather pointless because there is no common definition of "sound.' 
A preoccupation with the question, "what is the source of sound?", 
has in fact led to a host of "exact".but "incomplete" theories that 
are only applicable to the first order problem of aerodynamic sound 
production. For example, consider the Lighthill formulation 
(Ref. 2) where the density is regarded as the primary acoustic 
variable. Lighthill takes four equations (continuity and momentum) 
with five unknowns (pressure, density and velocity) and combines 
them into one equation with five unknowns. The left-hand side is 
the classical wave equation for the density while the right-hand 
side contains all five unknowns and is assumed to be the "source"; 
i.e., the Lighthill stress tensor. While the equation is "exact," 
it is a single "incomplete" equation for five unknowns and only 
becomes useful after several additional hypotheses are introduced. 
The most important is that "sound" is a by-product of the fluid 
flow, the "Lighthill hypothesis." The Lighthill stress tensor is 
assumed to be "known" either by calculation or measurement of tur- 
bulence properties in the flow that are by hypothesis independent 
of the sound that it produces. 

While the Lighthill formulation and hypothesis have been the 
most practical means of calculating flow noise, it excludes by 
decree any consideration of the interaction of sound with the 
primary flow. A complete theory of sound must be able to cope with 
three fundamental questions: 

1) How is sound produced by a "primary" fluid flow? 

2) How is sound processed by a flow? 

3) How does sound affect the "primary" flow? 

The last question is specifically excluded if one adopts the Light- 
hill hypothesis. 

Many definitions of sound can be stated that are Consistent 

with classical acoustics. For example, the density fluctuation 
(or saturation) is a convenient acoustic variable and was used by 
Lighthill. The 'experimentalist might say that "sound" is that part 
of the pressure fluctuation that is propagating with the local speed 
of sound. 
"sound" 

Two point time delayed measurements are required to identify 
and it is virtually impossible to implement such a definition 
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in a theory. We know that the .pressure fluctuation is not a valid 
definition of sound because hydrodynamic flows have large pressure 
fluctuations that are nonacoustic. Such considerations led 
Blokhintzev (Ref. 8) to make a distinction between sound and 
pseudosound. Later, Ribner (Ref. 3) split the pressure into two 
parts and identified one as the pseudosound or unsteady hydrodynamic 
pressure that would develop in the absence of compressibility. 
The remaining part is "acoustic" and satisfies a wave equation or 
what Ribner termed a dilatation equation. An important physical 
observation that Ribner stressed was that for sound to be pro- 
duced by or propagated in a flow,there must be local fluid dilata- 
tions. 

From classical acoustics we know that sound is a wave motion 
in which the kinetic energy is associated with the local motion of 
fluid particles while the potential energy is stored by local 
isentropic compression of fluid particles. From the continuity 
equation (2.3),we observe that a local fluctuation in enthalpy must 
be balanced by a volume change; i.e., 

div f = -5 E (2.5) 

If the isentropic compressibility (l/a21 is zero, the enthalpy 
variation acts as a Lagrange multiplier that is only required to 
balance the local acceleration in the momentum equation, but it 
cannot lead to volume changes (dilatations) or sound. Herein, lies 
the difficulty with adopting a thermodynamic quantity as the primary 
acoustic variable. The question always remains as to what part of 
the local fluid motion is "acoustic." To circumvent this con- 
ceptual difficulty,we start out with a purely kinematic definition 
of sound. 

Suppose we are given the solution of (2.3) and (2.4) subject 
to some initial and boundary conditions. We ask, how can we 
identify that part of the velocity field that is "acoustic"? From 
(2.5) we first note that there must be local volume changes for 
any sound to exist. Furthermore, these volume changes must be un- 
steady. We introduce an acoustic (or dilatation) potential 4 via 
the Poisson equation 

v2 .?A = 
at & div ;f (2.6) 

and define the acoustic particle velocity 
-t 
va = grad I$ (2.7) 

Given the right-hand side of (2.6) by measurement or calculation, 
we can identify a portion of the velocity field that is associated 
with unsteady volume changes. By our definition, sound is synon- 
ymous with "unsteady compressible flow." If the notion of a time- 
averaged mean flow is a meaningful concept we can replace (2.6) by 
the equation 
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V24’ = div (e - &) (2.8) 

Let ?i denote the remaining nonacoustic part of the velocity field. 
Then 

;=e+; a (2.9) 

and we can easily prove the following relations: 

<;> = <tt;> (2.10) 

curl "v = curl Z = 2 (2.11) 

& div u' = 0 (2.12) 

$11 of the mean flow (compressible or incompressible) is part of 

: 
and all+of the vertical flow (steady and unsteady) is part of 

. The u field is the entire flowfield less the unsteady com- 
pressible flow. 

It is interesting to note that in the modern theory of turbu- 
lent flow (Ref. 91, it is usually assumed that the turbulent 
velocity field is+incompressible even though the mean flow is com- 
pressible. The u field we have introduced is consistent with 
this concept of a turbulent flow. Our definition of 4 also 
agrees with th$ usual notion of sound in a homogeneous 
medium where va is the acoustic particle velocity and 

acqustic 
u= 0 . 

The acoustic potential satisfies the classical wave equation 

V2tJ = 0 (2.13) 

and the perturbation acoustic pressure is 

p’ = -p 3 (2.14) 

where P and a are constant. 

The acoustic particle velocity f, 1s typically very small 
compared to the "primary" flow velocity u . For example, a 140 DB 
sound wave has an acoustic particle velocity of approximately 
.6 m/set. Typical turbulence velocities in a flow capable of pro- 
ducing a 140 DB noise level would be of the order of a hundred 
meters per second. We use this observation in the following 
development to linearize with respect to the acoustic potential 
while we retain the complete nonlinear primary flow. We remark 
that the linearization is not essential and in fact a nonlinear 
wave equation for Cp can easily be derived that would permit one 
to study the onset of wave steepening and the formation of shock 
waves. 
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We point out that the acoustic potential I$ that we use 
throughout the present work differs from the velocity potential 
that we used in Ref. 1 in an important way. The velocity potential 
was used as the primary acoustic variable in Ref. l, even though 
it contained the potential flow associated with vortex motion. In 
the solution of specific problems,it was found necessary to admit 
discontinuities in $I . The acoustic potential that we use here is 
physically more appealing and is a smooth function of space and 
time. 

Our acoustic potential is related to the definition of sound 
introduced by Howe (Ref. 10). For a homentropic irrotational 
medium, Howe observes that awt is a measure of variation in the 
total enthalpy since the quantity 

is a constant (the Bernoulli constant). Beyond this point, Howe's 
theory makes no further use of the potential 4 nor does he 
separate the velocity field. Rather he chooses the total enthalpy 
(denoted by B > as the primary acoustic variable and proceeds to 
derive another "exact" but "incomplete" acoustic equation. 

Finally we remark that the need for separating the velocity 
field into acoustic and nonacoustic parts was recognized by Morfey 
(Ref. 11) who investigates the very difficult issue of the acoustic 
energy balance. To distinguish the acoustic energy from the total 
energy in a moving rotational flow,one must identify the acoustic 
velocity and pressure or enthalpy. An important energy theorem is 
discussed below in Section II D. 

C. ACOUSTIC THEORY 

We now develop equations for r$ and z . First, we separate 
the acceleration into acoustic and nonacoustic parts; i.e., 

D;: 2 
zt + grad $-- -cm 

Dt -3x; 
+ 

= g + grad - grad $I x 2 

where 

d&Z &+;,. grad (2.17) 

is the substantive derivative following the nonacoustic motion of 
the fluid. The first term in Eq. (2.16) is the nonacoustic ac- 
celeration and is the only term in the complete absence of sound. 
The second term is the particle acceleration associated with 
acoustic motions. The last term in Eq. (2.16) is a Coriolis 
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acceleration that is the essential coupling between the acoustic 
and vertical modes in a free flow. The.'importance of this term 
will become clear in the subsequent development. 

We substitute Eq. (2.16) into Eq. (2.4) and obtain 
-f 

g= -grad H + vV2e + grad Cp x 2 (2.18) 

where 

f+h+$+k+?!f - vv2'$ (2.19) 

Next, we solve (2.19) for h and substitute the result into Eq. 
(2.3), to obtain a wave equation for $ : 

L+(z.J+Lgrud ) - vv2+ - V2$ 
a 

+ div G 

But div ?i is not a function of time (see (2.12 1). In fact, 

div u' = - < 
1 Dh 
pE > 

(2.20) 

= - < > + O(M21grad $1) (2.21) 

so that the right-ha d side of Eq. 
1 flH 

(2.20) can be replaced by the 
;;r$eady part of .2 Dt . Next, we assume (see discussion on p.10 ) 

/grad $1 << Itl (2.22) 

and linearize Eq. (2.20) with respect to Cp . Also we omit terms 
of 0(M2) on the right-hand side of (2.20). The final set of 
equations of our homentropic acoustic theory can be summarized as 
follows: 

Compressible Primary Flow 

(2.23) 

02 -= 
Dt -grad H + VV2c + grad 4 x G (2.24) 

< 
1 DH -- 
a2 Dt > + div ; = 0 (2.25) 
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with the pressure given by 
‘cjp = -p p9 Dt + PS’H (2.26) 

If the primary flow z is incompressible in the mean, the time 
average terms can be eliminated in the foregoing system to obtain: 

Incompressible Primary Flow 

---------_------w-m- 

1 Dd I 
1 Dt= -grad H+ vV2t!+ grad Q x 2 

I I 
1 ,div t = 0 --------i---------4- i 

(2.27) 

(2.28) 

(2.29) 

The pressure is given by Eq. (2.26) and the speed of sound is a 
constant. We shall be concerned primarily with the last set of 
equations in the present report. 

Our decomposition of the velocity field has led to a natural 
decomposition of the thermodynamic state. The pressure consists 
of two parts; i.e., the acoustic pressure 

6P, = -P * (2.30a) 

and the hydrodynamic pressure 

6p = p6H (2.30b) 

From (2.28) and (2.291, we observe that H is the enthalpy asso- 
ciated with the incompressible flowfield and d satisfy the 
equations of a hydrodynamic flow (terms in the d&hHed box of (2.28) 
and (2.29)) with the exception of the Coriolis acceleration term, 
grad 9 x z in the momentum equation. Thus, in a homentropic flow, 
H is the pieudosound pressure introduced by Blokinchev (Ref. 8) 

and used extensively by Ribner (Ref. 3). The quantity H is 
dimensionally an enthalpy and we have previously referred to H as 
the "Bernoulli Enthalpy." It is important to note that the H field 
introduced in Ref. 1 has a different definition than in the present 
work. Therein, we used H to generalize the Bernoulli constant of 
homentropic irrotational flow. The Bernoulli enthalpy is absolu- 
tely constant, except where vorticity is present. Like the acoustic 
variable introduced in Ref. 1, H is usually discontinuous in a 
specific problem although the physical pressure given by Eq. (2.26) 
is continuous. We use the term "Bernoulli enthalpy" for H in 
the present report with this important distinction. 
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Our acoustic theory is "complete" although the convective 
wave equation for 4 is not exact; i.e., we have linearized the 
acoustic field - a nonessential approximation. The equations for 
the primary flow (2.28) and (2.291, are exact. We can pose any 
of the three fundamental questions of aeroacoustics (see p. 8 1. 

There is no mysterious "source" of sound in the context of the 
present theory. We have by definition isolated the "acoustic" 
and "vertical" (or hydrodynamic) modes (see discussion in Ref. 61, 
and have obtained a set of equations that illustrate the essential 
coupling between the two. Energy can flow from one mode to the 
other. We regard the subject of aeroacoustics as the study of 
these mode interaction processes. Whenever we use the term "source" 
in the following discussion, we mean that energy is being converted 
from one form to another. 

D. ENERGY THEOREM 

We prove an energy theorem that brings out the essential 
coupling between the basic modes. Consider the total kinetic 
energy of the primary flow in a fixed volume V , i.e., 

(2.31) 

Then 

dE -= 2 l 

dt 
i$ dV 

?iH+ v grad u2/2 

V 
-v$,ui 

axJ axJ 
- grad $I - (c X z) 1 (2.32) 

or using the divergence theorem, 

dE -= 
dt JR 

-I+#+ u2/2) + V &- u2/2 dS 1 
S 

- v l($ $)dV - Jgrad (p l <u' x z)dV (2.33) 

V V 
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We assume that V is sufficiently large that the surface integrals 
in (2.33) vanish. Thus, we obtain 

g = -VI (-$$)dV -Jgrad t$ l (5 x t)dV (2.34) 

V V 

The total kinetic energy of the primary flow can be changed by 
two mechanisms: 

1) Viscous dissipation 
2) Acoustic-vortex interaction 

The conversion of kinetic energy into heat by viscous dissipation 
is an important physical process, but is not of direct concern to 
the present discussion. In fact, we cannot rigorously account for 
this energy since we have assumed a homentropic model of the flow. 
The main point of our theorem is to illustrate the importance of 
the Coriolis coupling term in the momentum equation and the con- 
version of energy from the primary flow to sound or vice versa. If 
the expression 

grad 4 l (f x z) (2.35) 

is identically zero throughout the volume V , then no acoustic 
energy conversion can take place. Energy conversion can only 
occur in those regions of the flow where there is a Coriolis ac- 
celeration 3x3 that is nonzero and .where the vorticity 0' is 
nonzero. It is the work done by the Coriolis force against the 
acoustic particle velocity that results in a local transfer of 
energy between modes. If the energy conversion is primarily in one 
direction, we can "loosely" interpret this as a production process 
where one mode is the "source" of the other. An important corollary 
to our basic theorem is that mode coupling cannot occur in regions 
where the primary flow has a potential. For example, energy trans- 
fer can only occur in the core regions of a vortex flow. 

The energy theorem we have presented is of quite a different 
type than the results of Morfey (Ref. ll), who is concerned with 
consistent definitions of acoustic energy and fluxes that can be 
used to calculate noise. Our result may not be of direct computa- 
tional value but serves to illustrate a necessary condition for the 
local conversion of energy. We remark, however, that the acoustic 
formulation we have presented is a good starting point for the 
derivation of energy theorems, following the approach of Morfey. 

E. THE KINETIC "ORIGIN" OF SOUND - THE LIEPMANN ANALOGY 

The foregoing energy theorem has focused on the importance of 
vorticity for mode coupling. Without vorticity and in the absence 
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of finite boundaries, there can be no hydrodynamic flow. It is the 
production of vorticity by the action of viscosity at a boundary 
that is ultimately responsible for the unsteadiness of the primary 
flow and therefore of any aerodynamic sound that is produced. For 
the moment we shall be concerned with the question, "given a 
vorticity field at some instant of time, what is the mechanism 
whereby sound is produced in the subsequent development of the 
flow?" To simplify the discussion we neglect viscosity and con- 
vection in (2.27) and invoke the Lighthill hypothesis. Then, 

(2.36) 

Di: 
Dt= -grad ff + vV2G 

div ?i = 0 (2.37) 

The hydrodynamic flow can be calculated independent of the acoustic 
field (by the Lighthill hypothesis) and we have the nonlinear 
vorticity transport equation 

RZ 
E =; 

l grad f + vV2z 

and the Poisson equation for the Bernoulli enthalpy, 

(2.38) 

(2.39) 

From a given initial state, the solution of (2.38) will 
evolve independent of the acoustics. The Bernoulli enthalpy can 
be calculated by integration of the momentum equation or the 
Poisson equation (2.39). This enthalpy field is the body force 
distribution or acceleration potential required to maintain con- 
tinuity of the incompressible flow. It acts like a Lagrange 
multiplier and plays no dynamic role in the evolution of the flow. 
The effect of a very slight compressibility is first realized in 
(2.36); that is, 

(2.40) 

is the isentropic compressibility of the medium where l/p is the 
specific volume. The fluctuating hydrodynamic enthalp;,Esoduces a 
local unsteady volume change that is proportional to . It 1s 
the change of the acceleration potential or Bernoulli enthalpy 
following the hydrodynamic fluid element that is locally responsible 
for the local conversion of hydrodynamic or turbulent kinetic 
energy into sound. The extent to which the local "dilatation" 
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sources cancel to give an overall far field sound pattern must be 
found by solution of the wave equation (2.36). 

To complete our description of the kinetic origin of sound, 
we present a physical analogy that was suggested by Liepmann 
(Ref. 12). Consider the pendulum shown in Fig. 2.1 

Fig. 2.1. The Liepmann Pendulum - Physical Analogy of Sound 
Production. 

If the stiffness k of the rod is infinite we can calculate the 
primary motion of the pendulum with given initial conditions. This 
primary motion is analogous to the hydrodynamic flow of our present 
formulation. The tension in the rod is proportional to the cen- 
tripetal acceleration but plays no dynamic role in the evolution 
of the motion. It is a Lagrange multiplier analogous to our Ber- 
noulli enthalpy. If the rod is slightly elastic the changing 
centripetal acceleration will excite an oscillation in the rod that 
is analogous to the sound field of our acoustic theory. Energy is 
converted fromthe rotational motion of the pendulum to the elastic 
oscillation of the rod. The coupling is via the Coriolis acceler- 
ation. If we also include a small amount of damping in the rod, 
we can actually damp the motion of the pendulum by analogy with 
acoustic radiation energy loss. 

The Liepmann analogy is one of many analogies that one can 
construct to illustrate a very basic physical principle. When a 
slightly elastic rotating body undergoes a nonuniform acceleration, 
there is always the possibility of converting energy of the primary 
motion into an internal vibrational mode. The conversion of 
kinetic energy of a hydrodynamic vertical flow into sound is a 
beautiful illustration of this principle. 
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F. HOW IS SOUND PROCESSED BY A FLUID FLOW? 

The second basic question of aeroacoustics that we have posed 
concerns the interaction of an externally applied sound field with 
a primary flow. For example, if we shine sound on a vortex wake 
or jet, we know from observation that a scattered sound field is 
produced. In Section III, we consider in detail the interaction 
of sound with a primary vortex flow. Here we briefly discuss the 
problem in a more general context to bring out some of the essen- 
tial features of our acoustic theory. 

Consider the familiar problem of sound interaction with a 
two-dimensional mean parallel shear flow (see Fig. 2.2). The 
perturbation hydrodynamic flow can be represented by a stream 
function JI so that 

; = h,(y) + 1 - - J ax taqJ t* 
0 

(2.41) 

and 

iii = -h;(y) - Ev2qJ (2.42) 

where 
to Y 

the prime on u. the prime on u. denotes ordinary differentiation with respect denotes ordinary differentiation with respect 
. . 

Scattered Scattered 
sound sound 

Fig. 2.2. Acoustic Interaction with a Mean Parallel Shear Flow 
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The perturbation equations for $I , H and Jo are 

V DV29 
yF 

0 0 

T&f = ug g a2$ + 2u:, 2 
ax 

-g v21$ + u; 2 + v V4$ = Llg $$ + u;v2$J 

and the perturbation pressure or enthalpy is given by 

p’= OQ -ottH = h’ PO - 

(2.43) 

(2.44) 

These equations may be compared with the Lilley formulation (Ref. 4) 
of the same problem whereby the inviscid formsof (2.3) and (2.4) 
are perturbed about a parallel shear flow. We get 

= 2u; g (2.45) 

or the single third order equation of Lilley 

a2h' C t 2u' -= 
0 axay 

(2. 4.6 > 

(2.47) 

In (2.45) and (2.46), w is the vertical component of velocity 
(see Fig. 2.2). If the viscous terms in (2.43) are omitted, one 
can recombine the results to obtain the Lilley equation (2.47). 

The acoustic and perturbation vertical modes are very clearly 
separated in (2.43). We can discuss the interactions, that result 
when sound impinges on the basic shearflow. The last equation for 
the stream function (2.43) is the Orr-Sommerfeld equation with a 
right-hand side that is the curl of the Coriolis coupling (see 
(2.28)). For most velocity profiles uo ('Y > the Orr-Sommerfeld 
equation has unstable modes and we expect that the acoustic input 
on the right-hand side will excite these modes. In other words, 
sound can catalyze the process whereby mean kinetic energy is con- 
verted into turbulence. The enthalpy associated with the additional 
turbulence will produce more sound through the first two equations. 
Of course, we cannot use the linear equations to study this 
mechanism in detail because of the inherent exponential growth of 
the unstable modes. 
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Instabilities of the linear perturbation equations have 
precipitated some discussion over the validity of the Lilley equa- 
tion. In practice, any unstable modes that may exist are simply 
suppressed in the construction of the Green's function of the 
Lilley operator (Refs. 13, 14) so that the matter is primarily 
one of philosophy. If the unstable hydrodynamic modes are going to 
be suppressed (an ad hoc procedure), we can argue that an alterna- 
tive procedure would be to suppress the perturbation hydrodynamic 
mode altogether in (2.43); i.e., set $ = 0 and solve for $I and 
tl (see Section III below). From this author's point of view, 

a more serious objection can be raised with regard to the Lilley 
model and its application to the study of acoustic interactions 
with a fully developed turbulent shear flow. There does not appear 
to be any logical way of distinguishing turbulent fluctuations in 
the primary flow from the coherent hydrodynamic fluctuations in- 
duced by sound except when the wavelengths and frequencies of the 
two are significantly different. In practice, this means that 
scattering theories for turbulent shear flows based on the Lilley 
equations are probably only valid in the compact limit. 

G. HOW DOES SOUND AFFECT A FLUID FLOW? 

Our third basic question, the converse of the Lighthill 
hypothesis, is probably the most difficult to examine theoretically. 
The reason is that the uncertainty in calculating a meaningful 
primary flow is usually greater than the effect of any incident 
sound field. Yet, the question has been of considerable interest 
to the experimentalist for many years. The stability of jets to 
external disturbances was discussed by Lord Rayleigh (Ref. 15). 
More recently, Brown (Ref. 16), Hammitt (Ref. 17), Crow (Ref. 18), 
Bechert and Pfizenmaier (Ref.lg),and others have systematically 
studied the behavior of jet flows when subjected to broad band 
noise and pure tones. Pure tones can amplify broadband noise, 
and the jet itself can be excited by its own sound field or 
externally applied sound. These observations indicate that sound 
is not always a weak by-product of a primary flow as the Lighthill 
hypothesis asserts. Significant feedback mechanisms are possible 
and sho'uld be isolated experimentally and studied theoretically. 

In Section V, we show how a simple vortex flow can in fact be 
excited by sound. The basic acoustic feedback mechanism is the 
Coriolis acceleration term in the momentum equation (2.28). While 
this term may be extremely small, it can have a profound long- 
term effect on the primary flow. 

H. COMPARISON WITH OTHER THEORIES 

To conclude our theoretical development, we compare our basic 
equations with several of the acoustic theories that have been 
proposed since the original work of Lighthill. A direct comparison 
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with a single acoustic equation with "source" cannot be made for 
reasons discussed earlier. We have a "complete" interactive theory 
without any source. To provide a common basis for discussion, we 
adopt the Lighthill hypothesis and create a "source" model (or 
acoustic analogy) as we did in Section II E. Our acoustic equa- 
tion is (2.36). Our "source" is the hydrodynamic pressure or 
Bernoulli enthalpy that satisfies the Poisson equation (2.39). 
Alternative,ly, it can be calculated from the solution of (2.37). 
Our equations are formally analogous to the dilatation model of 
Ribner (Ref. 31, although Ribner uses an equation for the acoustic 
pressure instead of the dilatation potential. Also, for low 
speed flows, Ribner would replace the convective derivative of 
H in (2.36) by simple time derivatives; i.e., 

5 a2+ 2 i aff 
a at2 -v4=2= 

(2.48) 

v2?Y= -a2uiuj 
axiaxj 

(2.49) 

with the pressure given by 

P' = PO (2.50) 

sound pseudosound 
If we differentiate (2.48) with respect to time and use (2.49) and 
(2.5O), we recover Lighthill's equation for p' ; i.e., 

1 2, 
&s- - V2p' = p, a2uiJ 

axiaxj 
(2.51) 

The formal equivalence of our equations to those of Lighthill and 
Ribner in the low speed limit is thus proved. 

An important point must be made concerning the approximation 
of replacing the substantive derivative in (2.36) by the partial 
time derivative in (2.48). There is a sharp distinction between 
the substantive derivative of H and the substantive derivative of 
e - In an unsteady hydrodynamic flow, both terms in the convective 
derivative contribute equally to DH/Dt . A good example of this 
is the spinning vortex pair considered in Section IV. Only at 
very low speeds (vortex Mach number less than 0.1) where the 
acoustic wavelength is many, many times the vortex separation 
can one consider the local derivative of H to be a suitable 
approximation of DH/Dt in the acoustic calculation. On the other 
hand, refractive effects in the acoustic operator can be neglected 
for relatively much larger Mach numbers. The importance of this 
point will become more clear when we consider the detailed calcul- 
ation of the sound produced by a vortex pair. 
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The development of Powell (Ref. 20) on vortex noise is re- 
lated to the present work. Where we have called attention to the 
Coriolis coupling between the acoustic field and the primary flow 
Powell has developed a source theory starting with the Lighthill 
formulation that focuses on the Coriolis acceleration of the 
primary flow as the imoortant source term. We can illustrate the 
main points of 
The right-hand 

Powell's theory with the Lighthill equation (2.51). 
side is rewritten as follows 

a2uiuj 

axiaxj 
= div g+ 

= div(,$) t V2 u2/2 (2.52) 

& -t x ; 
where 

The solution of (2.51) is of the form 

[div(z + grad u2/2)1y,~ d$ 
l%q 

(2.53) 

where the integral is over all space and the numerator is evaluated 
at the retarded time 

T = t - ];-$//a . 

Integrate by parts in (2.53) and evaluate the far field to get 

where 

t pi a2 
4aa~lZl at2 / 

[u2/21d; (2.54) 

-+ 

L'X 
= 7% l 

(Z x iI) (2.55) 

is the projection of the Coriolis acceleration in the direction 
from the source to the observer. For very low Mach numbers, Powell 
argues that the second term is one higher order in Mach number 
compared to the first term. An argument used by Hardin (Ref. 21) 
in an alternate development of the Powell theory is that if the 
region of the primary flow is compact then differences in retarded 
times can be neglected and 
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h2/21& = (E)" (1 + O(M)) (2.56) 

where E is the total energy of the primary aqd the asterisk 
denotes evaluation at the retarded time t - Ixl/a . But, to 
lowest order E is a conserved quantity (see Section 1I.D) so 
that the time derivative in (2.54) eliminates the term. 'Follow- 
ing Hardin (Ref. 21) we expand the first term in (2.54) in a Taylor 
series around the common retarded time and note that the total 
dipole moment (force) is zero in a free flow. The final form of the 
Powell result is 

PO X'X~ a2 p'=- -- 
q lZ13 at2 

YiFjd;; (2.57) 

The second time derivative of the moment of the local Coriolis 
acceleration is the dominant source of the far field in the compact 
limit. The Powell theory is particularly easy to implement when 
concentrated line vortices are the dominant source. (See work of 
Hardin, Ref. 22. The main point is that Powell has derived a 
"compact" theory. If phase variations over the "source" region 
(the primary flow) are significant then the arguments leading to 
the simple result (2.57) are not valid. In our discussion of the 
vortex pair (a problem originally considered by Powell) we show 
that phase variations do become important for surprisingly low 
Mach number. In such cases it appears that one cannot avoid a more 
detailed integration over the complete hydrodynamic primary flow. 

We have discussed in previous sections the connection of our 
theory with Lilley (Ref. 4) and with Howe (Ref. 10). The foregoing 
discussion of Powell's theory also pertains to the theory of Howe 
in the form he uses to discuss noise production. In fact he 
refers to the source term in his (compact) acoustic equation as 
the Powell dipole and writes, 

- v2pf = -p, div(z x w') U-58) 

The importance of compactness in the use of Lighthill's theory 
was discussed by Crow (Ref. 23). In modern applications of the 
theory, as developed say by Ribner (Ref. 3), or Mani and Balsa 
(Ref. 13, 14>, it is customary to assume locally compact sources 
and include phase differences between the various localized source 
regions. For turbulence generated noise at moderate speeds, this 
is probably correct. If the turbulence Mach number exceeds 0.1 
the local source re 

7 
ions themselves tend to generate less noise 

than the compact M law indicates, (see Section IV). These non- 
compact effects should be included in high speed noise theory. 
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III. INTERACTION OF SOUND WITH STEADY VORTEX FLOWS 

A. PLANE WAVE - SCATTERING BY A VORTEX WITH CORE STRUCTURE 

We consider the scattering of a plane wave propagating along 
the x-axis from a single vortex with a radial core vorticity dis- 
tribution n(r) , as shown in Fig. 3.1 

ver 

-t 
Incident 

wave 

plane L Vorticity 

3,=ih(r) 

Figure 3.1 Scattering of Plane Waves by a Vortex 

The tangential velocity field is given by 

V(r) = $ pQ(p)dp (3.1) 

We assume that the maximum Mach number of the vortex is sufficien- 
tly small that we can neglect quadratic terms. Our basic inter- 
action model becomes 

(3.2) 
aL DtL 

Since tl is of order (M 
Eq. (3.2 1. Now let 

V2?-/ = div (grad 4 x T'kQ) (3.3) 

> we can neglect the convection terms in 
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where 

-1wt 
@ = Re(Oi + bs)e (3.3) 

ikx 
%= I @Oe (3.4) 

To lowest order (the Born or first scattering approximation) the 
equations for the amplitude of the scattered field are 

V2Gs + k2$, = - Sl 

V2H = div s2 (3.6) 
where 

2ikV a% -- 
% = TiF a0 (3.7) 

9, = (grad 0, x c)fi 

= - ~(ikS-@,, 
(3.8) 

The first term in S 
& 

is due primarily to the interaction of the 
sound with the poten ial flow "mantle" of the vortex while S2 is 
the direct Coriolis interaction with the vortex core. 

While we can in principle, solve for 4 and H everywhere 
in the flowfield, we are primarily interested in the scattered far 
field. Thus, we solve Eq. (3.5) in the far field to obtain 

% - T 0 
i H(l)@) 

s 
e-ik’l S,($)d$ (3.9) 

where 

H(')(kr) _ e 
0 

The solution for the 77 field is 

(3.10) 

H($) = & 
I 

ln1; - sl div s,dd 

1 
f 

=- 
2n 

(3.11) 

where we have used the divergence theorem to obtain the last result. 
We calculate the scattered fields due to the mantle and core as 
follows. Let 

% = 9, + am (3.12) 
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____-_--.._..-... ..---~. 

where 

Substitute Eq. 
.integration to 

4Jc = 

(3.13) 

(3.14) 

(3.11) into Eq. (3.13) and reverse the order of 
obtain 

k H(')(kr) e 
s 

-1kf 0; 
a-G 0 ' s2dz* 

-ikf,=S: -t 
e % d; (3.15) 

Y 

The last integral is easily evaluated. We get 

%=-E 0 
i H(1) (k+. 

P 
e-ikf1*'~2d; (3.16) 

Now substitute Eq. (3.8) and Eq. (3.4) into Eq. (3.16) and use polar 
coordinates to obtain 

k@Y (1) -ikyCcos (0 - 0') - cos e'] 
% = - qy Ho (kr) sin 0 e fi(y)dy de' 

(3.17) 

The integration over 8' can be carried out with the substitution 

8' 5 0" + 0/2 

so that r" 

ec = - E $PHA1) (kr) 
a 

ynJ,(2ky sin 8/2)dy*sin 0 (3.18) 

To evaluate em we introduce polar coordinates in Eq. (3.14) 
and substitute for $1 from Eq. (3.4). Integrate once by parts 
with respect to 8' and the integral becomes 

-iky[cos (0 - e0 - cos 0’1 
Gm = - & $yHL')(kr) k e Vdy de' (3.19) 

The integral over 8' is the sFe as in Eq. (3.17). Thus, we get 

'm 
= + $,;H;l) (kr) 

I 
yVJl(2ky sin 8/2)dy cos e/2 (3.20) 

Integrate by parts with resPecOt to Y to obtain 
00 

+m 
= $$ c$;H;~) (kr) yRJo(2ky sin 8/2)dy cot e/2 (3.21) 
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where we have used Eq. (3.1) in the differential form 

& yv = ys2 (3.22) 

By comparing Eq. (3.20) and Eq. (3.21) we note that the mantle 
scattering has been reduced to an integral over the core vorticity. 
This is not too surprising, since the mantle velocity field is de- 
termined uniquely by the core vorticity. The interpretation as 
mantle scattering rather than core scattering is important however. 
Observe that Eq. (3.21) is singular in the forward scattering 
direction indicating a strong focus. This is due to the great 
extent of the flowfield around a single vortex that presents a very 
large cross-section to plane waves. Because of this focus effect 
we cannot evaluate the total sound power. Also, the basic scat- 
tering theory must be regarded as invalid in the forward scattering 
direction. To get a better understanding of this focus effect we 
consider a line sound source in the next section. 

We combine Eq. (3.21) and Eq. (3.18) to obtain the final result 
for the scattered field. 

% 
= 2 $yHL')(kr)cos 8 cot $Sc(0) (3.23) 

where 

and 

co 

SC0 = F 

f 

yRJo(2ky sin e/2>dY (3.24) 
0 

00 m 
r = 21T 

d 
Wdy (3.25) 

The intensity of the scattered field normalized to the incident 
intensity is 

IS < 

ws a@s 

-= -patar > 

Ii 
r( p 

a+, a@1 
> at ax. 

where 

s = cos e cot $ - SC(e) 
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Concentrated Vortex 

For a concentrated point vortex the core factor SC is unity 
and the angular distribution of the scattered intensity is 

S2 2 e cot 28 
= cos 3 

For a core without mantle the same factor is 

(3.28) 

s2 2e = sin (3.29) 

a result previously obtained by Howe (Ref. lo>, and Yates and 
Sandri (Ref. 5). The basic directivity pattern, Eq. (3.24), agrees 
with a previous result of Miiller and Matschadt (Ref. 241, and is 
compared qualitatively with the core alone in Fig. 3.2 

/- 

Core only, Eq. (3.29) 

tivity 
1 

Figure 3.2. Qualitative Comparison of Basic Directivity 
with Core Scattering Only 

The dipole character of the core scattering is in sharp contrast 
to the quadrupole pattern with strong focus in the forward direc- 
tion when the mantle is included. Further discussion of the core 
results is given below. 

The scattered intensity is proportional to the factor 
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where X is the wavelength of the incident 

of the vortex. If is the characteristic acoustic length scale 
the vortex is essentially transparent to the incident 

For xy = O(X) or greater the validity of the Born approx- 
imation may be in question unless the core compactness is such that 
the amplitude of the scattered field remains bounded. We consider 
now the effect of various core structures. 

(3.30) 

sound and - 

(3.31) 

Solid Body Rotation 

If the vorticity is constant inside the core radius rc then 

= 0 r > rc 

and we readily calculate 

(3.32) 

Jl(2krc sin e/2) 
SC = 

krC sin e/2 

(krcj2 
(3.33) 

;IL- 2 sin2 e/2 , kr, << 1 

Exponential Core 

For an exponential distribution of vorticity 

a=se 

-r 
're 

e 
(3.34) 

we calculate 
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sc = [l + (2kre)2 sin2 f3/21-3'2 

;1- 6(kre)2 sin2 0/2 , kre << 1 (3.35) 

Betz Core 

For aircraft wing vortices, it has been shown from the theory 
of Betz (Ref. 25), that the vorticity is distributed according to 
the formula 

= 0 , r > b/3 (3.36) 

The core scattering factor is 

For any core we note that the principle effect is to reduce the 
scattered intensity. Scattering in the extreme forward direction 
is less affected except for large values of the compactness para- 
meters (kr,) . 

To compare the relative importance of the three cores, we 
require that the total vortex strength and polar moment of vorti- 
city be the same for each distribution. Then the three core lengths 
are in the ratio 

= (1.5 , 0.5 , 4.65) (3.38) 

The reduction in scattered intensity due to the core is given 
approximately by the first term in the asymptotic form of each 
formula for SC . These terms are in the following proportion 

(Solid Body, Exponential, Betz) 

g (1.125 , 1.5 , 2.16) 
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The solid core is the most effective scatterer while the Betz core 
is the least effective. In, general, if the vorticity is more dis- 
tributed, the amplitude of the scattered sound field will be less 
than for the equivalent concentrated vortex. 

The angular distributions of the scattered intensity for the 
three core types are compared in Figs. 3.3 a,b,c. For the expon- 
ential and Betz cores the effect is a uniform reduction of the 
scattered intensity. For the solid body core we note a more compli- 
cated diffraction pattern as the core compactness ratio is increased. 

Solid Body Core Without Mantle 

We point out that the previous calculations of Howe (Ref. lo>, 
and Yates and Sandri (Ref. 51, for the scattering from a finite 
solid body vortex core without mantle are in error. In both cases, 
only the scattering due to the Corlolis interaction with the core 
is considered. Direct refraction in the wave operator was neglected. 
We can use the present results to obtain the correct answer. The 
vorticity distribution is 

R = 5 
C 

H(rc - r) - $ 6(rc - rg (3.40) 

where f is the total vortex strength of the core neglecting the 
shell of vorticity at r=rc. The scattering factor for this 
core is 

s = cos 0 cot : J2(2krc sin 0/2) 

(krc12 
z-8-- sin 28 , krc << 1 

The pattern is that of a pure quadrupole in contrast to the dipole 
pattern reported earlier (see Fig. 3.2). Also the efficienT;roT2/8. 
the core as a scatterer is less by the compactness factor 
Refraction due to direct interaction with the velocity field En 
the core is just as important as the Coriolis interaction. 

B. ACOUSTIC INTERACTION WITH DISCRETE WEAKLY INTERACTING VORTICES 

The results of the previous section are useful for estimating 
the importance of core structure. The basic scattering pattern is 
singular, however, and it is difficult to use the results in a 
straightforward calculation of the scattered intensity. In the 
present section, we consider localized noninteracting (or weakly 
interacting) vortices in the plane and a more general sound field. 
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Fig. 3.3b. Effect of exponentiai core on intensity distribution of scattered plane waves. 
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Later we consider the particular case of a line source from which 
we obtain the general scattering Green's function. The approach 
in this section is somewhat different in that we adopt a Lagrange 
formulation of the basic interaction process. 

Consider a single line vortex interacting with an arbitrary 
acoustic field in the plane (Fig. 3.4). The velocity field is the 
SUIll of two parts 

Ar 
\ 

,bitrary 
sound 

\ 

Figure 3.4 Interaction of an Arbitrary Sound Field with a Line 
Vortex 

+ v = il(?i - 1) + Ga 
+ 
va = grad 4 

;f;G) = y $X3: 
Y2 

where A is the Lagrange coordinate 

= grad x (3.42) 

of the vortex, i.e., 

and 

is= v’(Xt) 
dt a a (3.43) 

Y r =- 
2lT (3.44) 
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where l' is the vortex strength. The H field is calculated in 
terms of the velocity potential x , i.e., 

Again, we consider only first-order interactions and neglect all 
terms quadratic in y . Then 

(3.46) 

Our acoustic equation becomes 

> ;:s + 2xa; M& - V2$ = E;(Z - A). a2e 
a2 aZat A ( ) (3.47) 

The term on the right-hand side is the dilatati-on rate produced by 
the acoustic acceleration of the vortex. The coupling term on the 
left-hand side is again due to convective refraction by the poten- 
tial flow mantle. Both terms are of the same order of importance 
to the interaction process. 

We remark, without proof, that the scattered sound field cal- 
culated with Eq. (3.47) and incident plane waves is identical to 
the result obtained in the previous section (see Eq. (3.2311, with 
the core factor set equal to unity. The calculation is straight- 
forward and was carried out as a check on the Lagrange formulation. 

The extension of Eq. (3.47) to N noninteracting vortices is 
immediate. We simply add up the direct interactions on the right- 
hand side and use the convective velocity field due to all of the 
vortices on the left-hand side. We get 

3 N 
LO+2 
a2 at2 a2n= & 

* t<z - it,,+ - v2f$ 
axat 

N 
1 =- c a2n=l 

;<; - ~n).'iz!L 

L i aZat 3 
n 

6 

(3.48) 



where -ti is the Lagrange coordinate of the nth vortex, the notion 
of noninveracting vortices can be made more precise with Eq. (3.48). 
The A 's are considered to be slowly varying functions of time 
by comcarison with the time required for a sound wave to traverse 
the complete collection of vortices. For example, if we think of 
the aircraft vortex wake, individual vortex filaments do not move 
relative to each other when viewed in a coordinate plane moving 
with the aircraft. 

C. LINE SOURCE INTERACTION WITH A LINE VORTEX 

An important special case of the foregoing theory is that of 
a line source of sound interacting with a line vortex as shown in 
Fig. 3.5. For simplicity we neglect any back reaction of the vortex 
flow on the acoustic source. In application, the effective source 
impedence would have to be estimated or derived from a separate 
calculation. 

L ine monopo le source Vortex at origin 

Figure 3.5 Line Source Interaction with a Line Vortex 

The results can be used to synthesize a more general scattering 
Green's function for multiple vortices. Also, we can use the 
results directly to estimate the effect of vortex wakes on engine 
noise. 

For a simple harmonic source at "x = z. we have 

-iwt 

@i 
0 (1) = I$~H~ (klk - frol)e (3.49) 

and the equation for the scattered amplitude is 
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V2$s + k2$s = - y- 2ik "u.- + a% 
a2 

T 
mantle core (3.50) 

with 

+ U=~iEXJ; 
21T \;;I2 

(3.51) 

We use the general results of Section III-A, Eqs. (3.9 - 3.14) to 
write 

% = 9, + +m (3.52) 

where 

C#I~ = f& HL')(kr) 
f 

-ik$ 
e dj: (3.53) 

9, = - bo (')(kr) e 
s 

-ik+ -f aGi 
U(Y) l - 

6 
6 (3.54) 

From Eq. (3.49) 

w. 1 - =-(#y 
k(; - zo) 

6 I;: - Zol 
Hil+kl;; - :,I, (3.55) 

and 

$"i 
k; 
-2 H~')(kx,) (3.56) 
I;,1 

Consider the core scattering. Substitute Eq. (3.51) and Eq. (3.56) 
into Eq. (3.53) to get 

-ik? 

= - ikr 0 H(l)(kr) H(l 
4a@i 0 1 )(kxo) sin 8 (3.57 > 

This is the familiar dipole pattern that we obtained with plane 
waves (see Eq. (3.18)). The vortex core sees a local plane wave 
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whose amplitude is reduced by the distance factor H('?kx ) . We 
note that the second Hankel function in Eq. (3.53) ii theOcomplete 
function while the first function is to be replaced by its far 
field asymptotic form, (see Eq. (3.10). 

The'calculation of the scattered sound due to the mantle is a 
slightly mars complicated problem than the core calculation. We 
use Eq. (3.54) and introduce polar coordinates. Then 

a% r 1 $.-Cm- 
a$ 2r y2 

and after integration by parts in 8' 

a% 
ae( 

we get 

(3.58) 

-iky cos(8 - 8') 
4Jm = - $$ $yHL')(kr) & HA')(kl; - sol) de' p 

(3.59) 
To carry out the integration we expand the Hankel function in the 
integrand in a partial wave series (see (Ref. 261, page 827). 

where 

HL')(kl? - $,I) = 
w ime f 

23 
e Gl)mGm(~,xo) (3.60) 

m=-cm 

Grn(~,xo) = Jm(ky)H;')(kxo) y < x0 

= Jm(kxo)H;')(ky) y > x0 (3.61) 

With formulas in Ref. 27, page 254, the integral in Eq. (3.59) can 
be evaluated in detail. The final series solution for the total 
scattering is summarized below 

m 

@S 
= $$ @;l) (kr) CTm(kxo)im sin me - 

H:')(kxo) 

m=l T + 

i sin e 

Mantle Core (3.62) 

with 

T = A H(l) + B J m mm mm (3.63) 
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m-l 

Am=l-JE-J;- 2 
c 

J2 m , m C kx 
0 

02 k=l 

T J; + 2 
c 

Jf , ml kxo (3.64) 
k=m+l m-l 

Bm = 1 + YmJm + 2 (3.65) 

where the argument of all of the Bessel functions in the definitions 
of T 
that %hi 

A B iskx For m greater than kx we remark 
s@r;esmconverge8 rapidly and is easy to calcalate. 

The important parameter that enters the point source calcula- 
tions is kx . It is 2lT times the number of wavelengths between 
the acoustic'source and the vortex center. In general, this para- 
meter is not small as we shall see in specific application to vortex 
wakes. 

The foregoing results are for point vortices. We can correct 
for finite core structure with the results obtained in the previous 
section. We simply multiply Eq. (3.62) by the core factor defined 
by Eq. (3.24). Also, we write down the result for multiple vortex 
scattering: 

(3.66) 

SE = p 
n J yRn(y)Jo(2ky sin On/2)dy (3.67) 

(3.68) 

where q&Y) is the vorticity distribution of the nth vortex core 
and fn is its total strength. Also 
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cos en = 
(An - Bo, CR - A,) 
pn - Sol l 12 - InI 

(3.69) 

The core correction we have introduced is a good approximation pro- 
vided the source center is several core radii from the vortex center. 
The foregoing results can obviously be used as a Green's function to 
calculate the scattering of more complex source distributions. 

Far Field Intensity 

We calculate the far field intensity for the single vortex- 
single source combination. We have 

(3.70) 

= pak2<(Im$)*> 

where 

Im$ = 4yIm - zol) + 2 (3.71) 

and 03 

sin me - 
H;')(kxo) 

2 i sin 8 1 (3.72) 

We use the vortex center as the reference origin (see Fig. 3.5) and 
expand the source in the far field 

HL')(klz - zol) = HL')(kr)e 
ikXo COS 8 

(3.73) 

The final result for the far field intensity is 
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where 

I sin (kxo cos e> 

+ (Re C) cos (kxo (3.74) 

Ii =pa 
k2($o,)2 

nkr (3.75) 

is the source intensity. We compare the overall intensity with the 
source intensity in DB via the formula 

'DB 
I 

= 10 log10 q (3.76) 

Note that ADB can be positive or negative. Typical results are 
plotted in Figs. 3.6 a,b, and c for the source location kx, = 10 
and three values of the amplitude factor rk/a . Note that the back 
scatter is virtually zero for the smaller values of rk/a . Max- 
imum scattering is in the forward direction at approximately 30 de- 
grees off the x-axis. The scattering pattern is reflected in the x- 
axis, if the sign of r is reversed. The strong forward scattering 
may be compared with the singular focus in the case of plane waves. 

D. SCATTERING OF ENGINE NOISE BY AN AIRCRAFT VORTEX WAKE 
We now apply our vortex scattering theory to estimate the 

effect of an aircraft vortex wake on engine noise. We conclude our 
investigation with a specific application to the DC-9 in a typical 
take- 9ff configuration. Strong flap vortices with r 0f 
133 m /set are located approximately 5.4 m from the engine. The 
engine frequency at the peak Strouhal number of 0.3 is about 240 Hz. 
The acoustic wavelength at this frequency is about 1.5 m. The essen- 
tial dimensionless parameters that we need are 

kxog 25 

and 
rkz 1.75 a 

We assume that the left engine is scattered by the left wing vortex 
and the right engine is scattered by the right wing vortex. Also, 
we assume that the engine sources are incoherent so that we can 
superimpose the intensity in the far field. The interactive noise 
field for this particular configuration is shown in Fig. 3.7. We 
estimate that the engine noise in the aircraft ground signature is 
enhanced by 3 or 4 DB due to the close proximity of the flap vor- 
tices. For higher frequencies in the engine noise spectrum there 
could possibly be greater amplification although the vortex core 
structure would have to be accounted for. 
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Fig. 3.6a. Direct ivity of Intensity Relative to Unscattered Intens ity. 

+I0 DB- 

43 



kxo = 10.0 Unscattered 
monopole 
intensity 

Fig. 3.6b. I.lirect ens .ty relative to CTnsc3ttered In tensi ty. 



kxo = 10.0 

rkz.5 
a 

Unscattered Unscattered 
monopole 
intensity 

Fig. 3.6~. Directivity of Intensity Relative to Unscattered Intensity. 
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Fir;. 3.7. Enp‘ir?e flap-vortex interactive noise for DC-9 in 
tske-off configuration. 
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These simple estimates suggest that significant variations of 
ground engine noise signatures can be caused by the trailing vortex 
configuration. If measurements are to be made of engine noise 
ground signatures it is recommended that a standard flap configura- 
tion be specified. These interference noise estimates could also 
explain discrepancies between measurements made with the same engines 
on different aircraft. Finally, we remark that detailed calculations 
of specific engine and wake configurations can be carried out with 
the multiple vortex scattering theory we have presented. It would 
be desirable, however, to develop the counterpart of Eqs. (3.66 - 
3.69) for a point source near a line vortex. 

In conclusion, we remark that we have focused on the weak 
interaction problem in the present investigation, i.e., the inter- 
action parameter Tk/a must be of order one or less. It is equally 
important to consider large values of this basic parameter which 
means large wave numbers or high frequency. Ray acoustics theory 
would be the logical theory to apply. In this regard we remark 
that in recent work of Burnham et al (Ref. 281, results of ray theory 
have been used to design a wake vortex tracking system. The device 
works at a nominal 
;y;;;es (r 

f equency of 3.5 kHz so that for typical aircraft 
5 = 500 m /set), the interaction parameter is of the order 

. The backscatter is weak but the device works quite well at 
short range. It is currently operational at Kennedy airport where 
it is used to detect vortex decay during normal airport operation. 
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IV. PRODUCTI-ON OF SOUND BY VORTEX FLOWS 

A. THE COROTATING VORTEX PAIR 

We first consider an elementary two-dimensional vortex flow to 
which we can apply our basic acoustic formulas. The problem is that 
of two vortices of equal strength that spin about their centroid as 
shown 

Fig. 4.1. Geometry of Spinning Vortex Pair 

The problem has been investigated in various ways by different 
authors (Refs. 20,29) and is an excellent problem for comparing 
various aeroacoustic theories. 

Source Evaluation 

We use the production formulation of equations (2.36) and (2.37) 
with viscous effects omitted. Thus 

1 a24 2 1 Dff 

a2 at* 
-V$=z= (4.1) 

Dii -= Dt - grad H (4.2) 

div z = 0 (4.3) 
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The hydrodynamic velocity field that satisfies (4.2) and (4.3) is 
most easily expressed in terms of a velocity potential. Thus 

-t u = grad x 

(4.4) 

with 

x = y c 3. (d-Go, 
tan-' -+ 

-& G+Go) 
is (;: - Go) 

+tan t 
1 * (Z+Go) 1 (4.5) 

The enthalpy H is most easily calculated from the Bernoulli 
formula 

H=Hm- z+p, ( 
The final result is 

1 + 2R2 - R* cost 
1 + R4 - 2R2 cos a 1 

(4.6) 

(4.7) 

where 
R = l%l/ro 

a = 2(9 - $I) (4.8) 

The quadrupole character of the H field is evident from the 
appearance of the double angle in (4.7). For later reference we 
note the asymptotic behavior of H ; i.e., 

fjz H,-2L ( 
2 

r2R2 > 
0 

+ Y2 - cos a - 
r2R2 0 c 

+ cos 2a - R2 2 - 3 cos 2a 

+ v + 0(1/R6) 
R 1 (4.9) 
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The first term is the steady state pressure due to the effective 
single vortex of strength 2P at the origin. The remaining terms 
are quadrupole, octupole and higher order components of the unsteady 
hydrodynamic pressure field. 

The acoustic "source" with the present production model is 
the substantive rate of change of the H field. After a tedious 
differentiation we obtain the following result: 

DH- Y3 ix-~ F(R,a) 
0 

where 
2 2 

F(R,a) = R (R -1)(R2-7)sin a 
(1+R4-2R2cos a) 2 

(4.10) 

(4.11) 

It is important to point out that in the calculation of # and 
DH/D t that the convective derivatives are as important as the local 
time derivative. Only in the far field is aH/at a valid approx- 
imation of DffDt . 

4.2. 
The form of the source function F(R,a) is plotted in Fig. 

The axes are node lines along with the circles with normalized 
radii R = 1 and fl . There are three distinct annular quadrupole 
regions that are alternately 90 degrees out of phase - the far 
field R > fl , the region 1 < R < sf and R < 1 . We turn now 
to the calculations of the noise generated by each of these regions 
and the interesting phase cancellation between them. 

The Acoustic Problem 

The general solution of the acoustic equation (4.1) is given 
by (Ref. 26, p. 893). 

-m 

where H(x) is the Heaviside function 

H(x) = 0 x < 0 
= 1 x>o 

We introduce the normalized variables 
(4.13) 

rt = Z/r0 

gO 
= S/r0 (4.14) 



II I 

.6 

F(R) 

.4 

.2 

0 

-.2 

- .4 

I 

DH Y3 
-ET= ro4 F (R,28) 

FlE. ‘1.2. plot of the normalized source distribution (see ('J-11)). 
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and the eddy Mach number 
Ut Slro 

M=a=--c (4.15) 

where .Q is the angular velocity of the spinning pair. Then 

@(it,T) = 

= +jd= iRodRo id@ 

0 0 0 

H(T - I"%l) 
p-q-q- F[R,, 2+ - ~M(T-T)I (4.16) 

The integrals in (4.16) can be evaluated if we note that F(R,a) 
(see (4.11)) is a periodic function of a and has a Fourier series; 
i.e., 

F(R,a) = 
n=l 

S,(R) sin na (4.17) 

where 7l 

S,(R) = ; 
I 

F(R,a)sin nada (4.18) 

0 

The coefficients S (R) can be evaluated explicitly with known 
results of Ref. 30,np. 113. We get 

S,(R) = nR2n(7-R2) 
1 + R* 

, OCR<1 

(4.19) 

Substitute (4.17) into (4.16) and carry out the integration over 
T to obtain 

@(z,T) = Re & .5, jn,dRord@ 
0 - 0 0 

s (R )e2in(+MT) 
n 0 Hi1)[2Mnl%ftol] (4.20) 
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We remark that the last expression could be used to evaluate 0 
and all acoustic properties in the near and far field. The results 
could then be used to calculate refractive effects and higher order 
acoustic-fluid interactions. In the following, we evaluate the 
acoustic far field only. 

For R >> 1 we have 

HA1)(2mlft-301) Q H~1)(2MnR)e-2iMnRocos(e-~) (4.21) 

where it is understood that the Hankel function on the right-hand 
side is to be replaced by its asymptotic expression (see 3.10). 
Substitute (4.21) into (4.20) and carry out the integration over 
9 l We get 

where 

(4.23) 

@(8,T) 2, Re * (-1)nH~1)(2MnR)e2in(e-MT)Cn (4.22) 
n=l 2a r 0 

c, = Sn(R)J2,(2MnR)RdR 

0 

The total sound power radiated is given by the expression 

P= -2Tr 5 & 
0 

-T 

= 16a2(pa3ro)M7 i 4nlCn12 
n=l 

(4.24) 

The far field solution is a series of outgoing partial waves, 
the leading term of which is a quadrupole whose frequency is twice 
the basic rotational frequency of the vortex pair. The amplitude 
cn of each partial wave must be evaluated numerically. The weight 
of the integrand in (4.23) gives us a measure of the virtual source 
region of the flow (see Fig. 4.2). For very small Mach number and 
n not too large the weight of the integrand is in the far field 
where R = 0(1/2Mn) . We replace Sn by its asymptotic value and 
obtain in the compact limit 

'n Zn R-2n+lJ2n(2MnR)dR 

0 
n2n-1 2n-2 

g 2(2n-1J M , M-t0 (4.25) 

53 



The first three values of Cn are as follows: 

n cn 
1 l/2 -I- 2 -I*/3 
3 81~~180 (4.26) 

The strength 
M3 

f each higher order multipole decreases with an 
additional factor 

From (4.24) and (4.25) we observe that in the compact limit, 

P % 16a2(pa3ro)M7 (4.27) 

The sound power radiated varies as M7 in accordance with known 
results for compact two-dimensional aeroacoustic theory (see Ref. 31). 
A simple M8 power law was obtained for the spinning vortex pair 
by Powell (Ref. 20) because he considered a segment of a three- 
dimensional ring pair. The M7 law was obtained by Miiller and 
Obermeir (Ref. 29) who solved the problem in the compact limit 
by matched asymptotic expansions (see below). 

In the compact limit all acoustic theories seem to converge 
to the same answer for the acoustic power radiated. We are now in 
a position to place bounds on the validity of the compact limit 
for this simple problem. The multipole coefficients (4.23) and 
the sound power were evaluated numerically over a range of Mach 
numbers. The results are presented in Fig. 4.3. The M7 law is 
given by the dashed line and the numerically calculated total sound 
power is given by the solid line. The various multipole contribu- 
tions are also shown separately for comparison purposes. The total 
sound power is pure quadrupole for eddy Mach numbers, less than 
0.3 . The higher order poles contribute to the total sound power 
for higher Mach numbers although the basic calculations we have 
carried out are suspect for these Mach numbers. An interesting 
mathematical point is that the multipole series seems to diverge 
for M > 2/e where e is the base of the natural logarithms. 
Numerical calculations also indicate that this is the case. 

The real significance of our calculation is for M < 0.3 . 
First, we observe that the compact limit is asymptotically valid 
for Mach numbers less than 0.1 . As the Mach number increases 
toward 0.3 the power radiated diminishes by 15 DB due to the non- 
compactness of the vortex pair structure. We remark that the 
acoustic wave length is 30 times the radius of the vortex pair 
at M = 0.1 ! This result gives an idea of how large the wave 
length must be to treat an eddy as compact. In a high speed tur- 
bulent flow we would expect eddy Mach numbers of the order of 0.2 
to 0.3 . Our results indicate a significant reduction in the sound 
power due to eddy noncompactness. 
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Matching in the Compact Limit 

A useful and familiar technique in aeroacoustics is that of 
matched asymptotic expansions. Crow (Ref. 23) used the technique 
to make a general critique of the Lighthill theory. We remarked 
earlier that M'iller and Obermeir (Ref. 29) used the method to solve 
the spinning vortex pair problem. It is a simple and powerful 
tool for calculating acoustic fields in the compact limit. We 
conclude our discussion of the vortex pair by using the idea of 
matching and illustrate the limitation of the method to the 
lowest order compact limit. 

The asymptotic expansion of the hydrodynamic pressure field 
of the vortex pair is given by (4.9). We know that this field 
is transformed into an acoustic pressure field for sufficiently 
large R . In some intermediate overlap region the far field 
approximation of W should match the near field approximation of 
the acoustic field. We carry out the matching for the leading 
term in each multipole that we obtain from (4.9); i e., let 

C 

.2in(0-MT) 

G- 1 (4.28) 

The far field acoustic pressure (enthalpy) with the same phase as 
tl, is of the form 

a4n 
'n='at= Re[2inOQn(fi,T)] 

= Re[2inQAnHiA)(2nMR)e2in(eBMT)] (4.29) 

where A 
small MRn, 

is to be determined by matching. We expand (4.29) for 
a procedure that only works if M is small. Thus 

(4.30) 

Now equate (4.30) and (4.28) and solve for An . We get 

(4.31) 

Substitute (4.31) into (4.29) and expand for large R to obtain 
the acoustic far field. 

'n 
H~1)(2MnR)e2in(e-MT)Cn (4.32) 
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where 

cn = 
n2n-1M2n-2 

2(2n-l)! (4.33) 

The last result is identical to (4.22) with Cn given by the 
compact approximation (4.25). The matching procedure yields the 
correct results for the multipole coefficients in the compact limit. 
We have not been able to obtain corrections for noncompactness 
via the matching procedure or any other method. It appears that a 
detailed integration over the near field pressure must be carried 
out to obtain these corrections. 

B. JET IMPINGEMENT NOISE 

In recent experimental work of Preisser and Block (Ref. 32) the 
noise of subsonic jets impinging at normal incidence on a plane 
wall has been carefully measured. In earlier work of Snedeker and 
Donaldson (Ref. 33) extensive measurements of mean flow and tur- 
bulence properties of impinging jetswere carried out. The acoustic 
data indicate noise levels 10 to 15 DB greater than the noise of 
the free jet. The flow data indicate that the turbulence levels 
near the impingement point are not substantially different from 
those in the free jet. What is the mechanism for the excessive 
noise? By simple imaging of the free jet sources in the plane 
boundary, we can argue that the noise should be 6 DB greater than 
the free jet. What is the origin of the other 5 to 10 DB? 

From our discussion of the general problem of noise production 
in Section II, the physical mechanism for the impingement noise 
is evident. Consider a turbulent eddy (for example, the two-vortex 
model) that is convected along a streamline near the impingement 
point. The acceleration of the eddy due to streamline curvature 
is a real noise production mechanism. The local W-field will be 
magnified by the acceleration of the mean flow and so Dff/Dt will 
be greater. To estimate the order of the magnification, we con- 
sider the Poisson equation for W ; i.e., 

V2# = -(uV) ,i,j 
= i1 j’ 

-2iitjuJj; - u,ju,i 

where we now use tensor notation and introduce a mean Ui and fluc- 
tuating velocity field ui . Recall in (2.49) and (2.51) that the 
source of W is the same as the source of Ribner's pseudosound 
equation and Lighthill's acoustic equation. The magnitude of the 
source of the W-field is a direct measure of the magnitude of the 
sound field. .We estimate the increased impingement noise by 
evaluating the source term, in particular the shear noise, in 
(4.34) for a free and impinging jet. 
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The geometry of the impingement model is shown in Fig. 4.4. 
We suppose that the impingement point is in the fully developed 
turbulent region of the free jet. The mean impingement flowfield 
can be well-approximated with a general result of Barnes and Sullivan 
(Ref. 34) who considered a Gaussian velocity profile impinging on an 
infinite plane wall. Unfortunately, their exact solution is a series 
of hypergeometric functions that converges very slowly except in 
the vicinity of the impingement point. There it can be shown that 
the mean flow can be approximated by a streamfunction that in 
cylindrical coordinates is of the form 

I) = Cr2z (4.35) 

The constant C is a measure of the curvature of the mean flow as 
we shall see below. 

The velocity components are readily evaluated with (4.35) 
and we get 

-1 
U =li!!L=Cr 

r v 
yj2 = 0 (4.36) 

,3 = -1 w -= 
r ar -2cz 

where is, u2 , ii3 are the contravariant components corresponding 
to the r 8 and z axes respectively in Fig. 4.4. 
of interest is'the mean shear tensor 

The object 

where 

;i . =&+,i 
¶J 

ii” 
axJ aj (4.37) 

are the nonzero Christoff& symbols for cylindrical coordinates. We 
substitute (4.36) and (4.38) into (4.37) to obtain the following: 

ii1 aiT 
$1 =ar=C 

yj* =r* 

G2 12 

ii=c 

,3 = g = -2c 

(4.39) 

where all other components of iii . vanish. Note that the sum of 
the three terms in (4.39) is zerdJin accordance with the incom- 
pressible continuity equation. Also, we have introduced the phys- 
ical components of the mean velocity in place of tensor components. 
If we substitute (4.39) into (4.34) it can easily be shown that 
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v2ff= 6c pzL + (u f'J 1) 
,i,J Impinging (4.40) 

4 k Jet 
Shear Self 
noise noise 

Following Ribner, we call the two terms shear noise and self noise. 
We point out that the basic physical mechanism of the shear noise 
term is the "acceleration" of turbulent eddies in the curved stag- 
nation point flow. The resulting acoustic radiation is very much 
analogous to the phenomenon of Brehmstrahlung radiation in atomic 
physics as pointed out by Williams (Ref. 35). 

To bring out the essential role of the impingement acceleration 
we compare (4.40) with the corresponding result for a free jet 
where we model the mean flow as a parallel shear flow. We readily 
obtain 

v2w= -2 & aul+ (puj’) 
ar az ,133 

Free (4.41) 
Jet 

The experimental results of Snedeker and Donaldson (Ref. 33) in- 
dicate that the magnitude of the turbulence is not appreciably al- 
tered by the impingement process. The turbulence is essentially 
frozen along streamlines until several radii from the impingement 
point where it re-accomodates to the wall shear. On the other 
hand, the experiments of Preisser and Block (Ref. 32) indicate that 
the acoustic source is localized within a few radii of the impinge- 
ment point. Thus, we conclude that the enhancement noise must 
result from the shear noise term. In (4.40) the coefficient C is 
given by (see (4.39)) 

c=g (4.42) 

We compare C with at/ar in (4.41). 
aidar 

It seems plausible that 
for the impinging jet should be the same order of magnitude 

as af/ar of the free jet. The length scale for both terms is 
the radius or diameter of the free jet. The velocity change in 
both terms must scale with the average mean flow velocity. Assuming 
that the two terms are the same order of magnitude, we observe that 
the'impingement source is greater than the free jet source by a 
factor of 3 . Without carrying out the detailed acoustic integrals, 
we can see that the factor of 3 increase in the source strength will 
translate into a factor of 9 in the sound power or approximately 
10 DB. If this is added to the 6 DB due to imaging of the free jet, 
we have an estimated noise increase of 16 DB in rough agreement 
with the acoustic over pressure measurements of Preisser and Block. 

C. A SUGGESTED PROBLEM 

A detailed calculation of the radiated noise should be carried 
out with the source term (4.40) and measured or calculated jet 
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turbulence data. Time did not permit this calculation under the 
present contract. While it is important to carry out the foregoing 
calculation it is equally important to illuminate the physical 
mechanism that leads to the increased noise. A two-dimensional 
model problem that would illustrate the basic enhancement mechanism 
is the following: We have carried out a detailed calculation of 
the noise generated by two corotating vortices in a free flow. 
The next step is to imbed the pair in various accelerating mean 
flowfields; e.g., the stagnation point flow or mean shear flow. 
The noise field should be enhanced by the mean acceleration and 
become directional. If the eddy Mach number is sufficiently low, 
we can use the compact Powell theory (Ref. 20) as extended by 
Hardin (Ref. 21) to calculate the noise. For high speed jet im- 
pingement, we should account for noncompactness of the eddy vortex 
pair as shown in Section IV of this report. For the axial jet, 
the noise due to impinging vortex rings should be calculated. The 
work of Davies, et al. (Ref. 36) would again be the easiest to 
apply in the compact limit. 

V. EXCITATION OF A FLUID FLOW BY SOUND 

A. DISCUSSION OF EXPERIMENTAL RESULTS 

It has long been recognized experimentally that sound can 
have an effect on the development of a fluid flow. For example, 
the transition from laminar to turbulent flow in a boundary layer 
can be altered at will with the incident sound field (Ref. 37). 
This is not surprising since the basic laminar flow is known to be 
sensitive to small disturbances of any kind for sufficiently large 
Reynolds numbers. 

More interesting is the fact that turbulent flows can be 
stimulated or excited by impressed sound fields or by their own 
sound. For example, Brown (Ref. 16) has observed the excitation 
of jets by pure tones over a range of frequencies. He found, for 
example, that eddies form in the outer part of the jet at the 
frequency of the incident sound. For certain excitation frequencies, 
there was almost an explosive excitation and spreading of the jet. 
In other experiments, Hammitt (Ref. 17) has recorded the noise of 
a jet and played it back to the same jet. The result was a large 
amplification of the turbulence in the jet. Crow and Champagne (Ref. 
18) considered the excitation of jet turbulence by upstream dis- 
turbance pure tones and carefully measured the enhancement of the 
turbulence at the excitation frequency and its harmonies. More 
recently, Beckert and Pfizenmaier (Ref. 19) have shown that pure 
tone can amplify the jet broadband noise. All of these results 
indicate that a free turbulent flow can be modified significantly 
by sound. Because of these facts, there has been a renewed 
interest in the excited jet as a diagnostic tool and by those 
who are interested in noise suppression (see Ref. 38 e.g.>. 
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If the turbulent structure of a jet could be controlled acoustical- 
ly, there is the possibility of designing a more efficient noise 
suppressor. 

B. THE LIEPMANN ANALOGY REVISITED 

In Section II E, we used the Liepmann analogy to illustrate 
the basic mechanism of noise production by an unsteady hydrodynamic 
flow. With a slight extension of the analogy we can illustrate the 
principle of fluid excitation by sound. Suppose that we excite 
the vibrational mode of the Liepmann pendulum by some external 
source. The vibrational energy can then flow into the rotational 
motion of the rod. By analogy, if we shine sound on a rotating 
fluid element, we should be able to excite the fluid motion. In 
the subsequent discussion, we carry out a detailed calculation of 
the spinning vortex pair and show that this is indeed the case. 

The following example illustrates the direct transfer of 
acoustic energy into the hydrodynamic vertical mode. An equally 
important mechanism to be considered is the catalytic effect of the 
sound field on the production of turbulence from the mean flow. 
We mentioned this point earlier in reference to acoustic stimula- 
tion of boundary layer transition. Also, we have seen from the 
linearized equations (Section II F) how the Coriolis coupling 
can lead to acoustic excitation of the basic instabilities of a 
laminar flow and, therefore, of the transition process. The analysis 
of transition phenomena is difficult without the complication of an 
acoustic field and is beyond the scope of the present study. We 
simply call attention to their importance and consider a more simple 
model problem that contains part of the basic physics. 

C. EXCITATION OF THE COROTATING VORTEX PAIR 

We consider two equal corotating vortices with a plane wave 
incident sound field as shown in Fig. 5.1. 
tions for the vortex centers x and B are 

The Lagrangian equa- 

d-A -= Y L(A-8) 
dt @--6I 2 

+ lva sin(kz*i-wt) 

dif -= y 
dt 

iEx(&-6> + xv 
$-B'I 2 

a sin(kzms-wt) 

(5.1) 

(5.2) 

where v 
coordinaees 

is the magnitude of the acoustic velocity. We introduce 
for the center of vorticity and the relative spacing. 

&A+iB 
2 ’ E = it-3 (5.31 

Equation (5.1) and Eq. (5.2) become 
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.dit 1 -= .k&? 
dt v, sin(Zx*Lwt)cos 2 

d? 2y %g + 2fv, dt= r 
.k&$ 

cos(kT=%-wt)sin 2 

(5.tr) 

(5.5) 

The acoustically induced motion of the center of vorticity leads to 
scattering. We discussed this problem in detail in Section III. 
In the following discussion, we fix the center of vorticity and 
consider the acoustic effect on the relative motion. The error 
incurred is second order in the amplitude of the acoustic field. 

We introduce the following scaling and dimensionless notation: 

f = 2ro(X,Y> 
2r$ 

, t Z-T 
Y 

2wrg kr, 
Q=-=- 

Y M , K = kr 0 * (5.6) 

The equations for X and Y become 

dX Y - = -- 
dT R2 

+ E sin KX cos Q'r 

dY X -= 
dT 2 

where 

R2 = x2 + Y2 

“a 

--t- 
incident 

plane wave 

(5.7) 

(5.8) 

Fig. 5.1. Acoustic Excitation of Vortex Pair. 
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and 

E 2roVa va =- =- 
Y Ut 

(5.9) 

Y = sin T + EY' (5.10) 

Then to lowest order the equations for X' , Y' are 

g, - XT sin 2-c + Y' cos 2-c = sin(K cos ~)cos Pc 

P1 -X’ cos 2T + Y' sin 2-c = 0 (5.11) 

Two independent solutions of the homogeneous equations are 

‘i = cos T + 2~ sin 'c x; = -sin T 

yi = sin T - 2-r cos 'c ys = cos T (5.12) 

Note that the first solution has a linear secularity; i.e., for 
arbitrary initial conditions the perturbation solution Will grow 
linearlv in time. With the homogeneous solutions (5.2), we can 

is the ratio of the acoustic velocity to the orbit velocity of the 
vortex. An essential feature of the excitation in (5.7) is that 
there must be a phase difference between the velocities seen by 
each vortex. If the wave number K tends to zero, the incident 
sound looks like a hydrodynamic field to the pair and no excita- 
tion can result. 

We now assume E << 1 and consider the perturbation form of 
(5.7). Let 

x = cos T + SX' 

write down the general solutions-of (5.11) in the form T 
X’ = (cos T + 2~ sin T) I cos t sin(rc cos 

T 0 

+ sin -r 
/ 

(sin t - 2t cos t)sin(lc cos t 

0 T 

y' = (sin T - 2-c cos T) I 
cos t sin(K cos 

T 

- cos T 
I 
0 

J 
0 

(sin t - 2t cos t )sin(K cos t 
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t)cos Sit dt 

cos Qt dt 

t)cos fit dt 

(5. 13) 

cos Rt dt (5.14) 



where we have assumed zero initial conditions. For small K and 
large T it can be shown that the integrals in (5.13) and (5.14) 
are bounded except when Dis 2, in which case the perturbation solu- 
tion grows quadratically in time; i.e., 

2 
X' QJ T sin T 

2 
Y' % + cos T (5.15) 

From the perturbation analysis, we expect that the nonlinear sys- 
tem will have a maximum response at the acoustic frequency corres- 
sponding to Sl = 2 . Note that this is also the first acoustic 
frequency of the vortex pair alone (see Section IV). From the 
scale relations (5.6) we also note that at the resonance condition 

or 

K = ka = HIT f = 2M 

For a Mach number of order 0.1 we can have a tuned resonance con- 
dition with an acoustic wave length some 30 times the radius of the 
vortex pair. The resonance criteria is a frequency matching con- 
dition and does not require that the acoustic wave length match 
the eddy length scale. 

To verify that resonance excitation of the vortex pair does 
occur we solved (5.7) numerically and used the results to compute 
the accelerations and the acoustic source UH/Dt from (4.10) and 
(4.11). We use the latter in the unnormalized form 

DH -= 
,3 r2(r2-77:) (r2-7i)sin(f3-$1 

" 2 (r4-2r2r2 
rO o o cos 2(8-$1 + ,:I2 

(5.17) 

where r 
vortex a8d' P 

I$ are the instantaneous polar coordinates of either 
0 are polar coordinates of a point in the flow- 

field source rggion. The principle cause of the acoustic source 
is the acceleration induced by the incident acoustic field. Thus, 
we give a phase plot of X versus Y and a plot of Dff/Dt versus 
time for each case. The observation point for DH/Dt is shown 
in Fig. 5.2. We choose M = 0.1 and 8 = 0.06 for all cases. 
The magnitude of the excitation was chosen somewhat large for the 
purpose of visualization. The important point to observe in the 
following results is the relative magnitude of the response to the 
excitation. For reference, we first give the unexcited acoustic 
source in Fig. 5.2. The acceleration phase plot is a cir le (not 
plotted). Note the anharmonic content in the plot of DW Dt 4 . 
This is the source of the hfgher harmonics (see (4.26)) in the acoustic 
radiation of the vortex pair. In Figs. 5.3 and 5.4 we give the 
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Unexcited pair 

M = ut/a =O.I 

E = Va /U+ =O 

Fig. 5.2. Acoustic source of an unexcited vortex pair, 

point 

R= .5 

M = 0.1 . 



Fig. 5.3. Acceleration Phase Plot for Detuned Acoustic Excitation; 
L-2 = 1.5 ) M = 0.1 , E = 0.06 . 
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Fig. 5.4. Acoustic Source Function for Detuned Acoustic Excitation; Q = 1.5 , M = 0.1 , 
E = -06 , R = 0.5 . 



acceleration and Dff/Dt for a highly detuned case i-2 = 1.5 . 
There is very little change from the unexcited case. In Figs. 
5.5 and 5.6 we present the results for fi = 2. The change in 
DH'Dt is approximately 25 percent of the unexcited amplitude, 
four times the magnitude of the excitation. In Figs. 5.7, 5.8, 
and Figs; 5.9, 5.10, we present the results for values of R 
slightly more n = 2.1 and slightly less 52 = 1.9 than the 
linear resonance condition. In the first case, the result is much 
larger values of the acceleration and D#/Dt . Note that (DH/Dt) 
is about 50 percent greater than the unexcited case, indicating aRax 
amplification factor of about 8 . For s2 = 1.9 the magnitude of 
the acceleration and DH/Dt is attenuated by a factor of about 8 . 
Thus all incident acoustic frequencies in a narrow band around the 
fundamental pitch 52 = 2 are capable of amplifying or attenuating 
the basic vortex motion. 

D. QUALITATIVE COMPARISON WITH EXPERIMENT 

The elementary mechanism we have described for excitation of 
fluid motion by sound can be used to explain in part some of the 
experimental observations. In the experiments of Brown (Ref. 16) 
and Crow and Champagne (Ref. 18) pure tones were found to enhance 
turbulence in the frequency band near the excitation. In fact, 
Brown observed the formation of discrete vortices in the edge of 
the jet with an angular frequency equal to the excitation frequency. 
The jet would also become highly unstable for certain excitation 
frequencies. The process of vortex shedding at the nozzle lip is 
also excited by the incident sound and certainly plays a role in 
the subsequent formation of the jet. However, it seems that the 
complete jet can present a large cross section to the incident 
sound. As such, the free flow excitation mechanism we have des- 
cribed can be equally important. 

We can use the present results to speculate on the mechanism 
of broadband noise amplification by pure tones that was reported 
by Bechert and Pfizenmaier (Ref. 19). Suppose 'that a jet flow- 
field is composed of "small scale" random turbulent eddies super- 
imposed on "large scale" coherent vortex structure. Further sup- 
pose that the random turbulent motion is acoustically more efficient 
than the large scale structure. Now, 
pure tone that is properly tuned, 

if we ensonify the jet with a 
the vortex motion associated with 

the coherent structure can be energized at the expense of the 
acoustic energy in the pure tone. The random turbulent flow is 
subsequently excited by the more energetic vortex flow and would 
be expected to radiate more broadband noise. 
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Fig. 5.5. Acceleration phase plot of acoustically excited vortex 
pair; R = 2.0 , M = 0.1 , E = 0.06 . 
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Acoustic Source Function at Resonance; R = 2.0 , M = 0.1 , E = 0.06 , R = 0.5 . 
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Fig. 5.7. Acceleration Phase Plot for Slightly Detuned Excitation; 
R = 2.1 , M = 0.1 , E = 0.06 . 
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Fig. 5.8. Acoustic Source Function for Slightly Detuned Excitation; Sl = 2.1 , M = 0.1 , 
R = 0.5 . 



Fig. 5.9. Acceleration Phase Plot for Slightly Detuned Excitation; 
s-2 = 1.9 , M = 0.1 , E = 0.06 . 
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Fig. 5.10. Acoustic Source Function for Slightly Detuned Excitation; Q = 1.9 ; M = 0.1 , 
E = 0.06 , R = 0.5 . 



VI. CONCLUSIONS 

Because of the comprehensive scope of our study, we summarize 
our conclusions for each section separately: 

A. SECTION II - ACOUSTIC THEORY 

Our general theory of acoustics for hornentropic flows is self- 
contained and complete. We have shown that the three basic ques- 
tions of aeroacoustics can be investigated systematically with the 
theory. The definition of sound and the concept of Bernoulli 
enthalpy are the fundamental building blocks. The importance of 
Coriolis acceleration for coupling of the acoustics and vertical 
modes is illuminated. 

B. SECTION III - INTERACTION OF SOUND WITH VORTEX FLOWS 

1. For plane wave scattering from a vortex the overall 
directivity is quadrupole-like with a strong focus in 
the forward direction. Our results are in agreement 
with those of Miiller and Matschadt (Ref. 24). 

2. A concise formula for core scattering is derived that 
only involves a quadrature over the core vorticity. 
Vortices with distributed core vorticity (like Betz) 
scatter less than a more concentrated vortex. 

3. The overall scatted amplitude is proportional to rk/a . 
Core structure is important if kr is of order 1 where 
rC 

is the geometric extent of theCcore vorticity. 

4. A general theory of acoustic scattering from discrete 
weakly interacting line vortices is presented. Core 
effects are included using the plane wave result. For 
a line vortex, the forward scattering focus (obtained with 
plane waves) is eliminated. Scattering is a maximum at 
about 30 degrees from the forward scattering direction. 
The parameter kx 

e 
where x is the distance from the 

source to the vor ex enters the scattering formula as a 
geometric attenuation factor. 

5. The scattering theory is used to estimate the scattering 
of engine noise by wing vortices. For the DC-g, it is 
shown that scattering of jet engine frequencies near the 
peak Strouhal number can be of order 3 or 4 DB. 

C. SECTION IV - PRODUCTION OF SOUND 

1. An explicit calculation of the noise generated by a 
corotating vortex pair 

3 
s carried out. For low Mach 

number (M < 0.1) the M production law is obtained in 
agreement with other two-dimensional compact acoustic 
theories. 
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2. For 0.1 < M < 0.3 it is shown that the noise is reduced 
by 10 to 15 DB due to noncompactness of the source region 
even though the radiation is basically quadrupole. 

3. It is recommended that the corotating vortex pair be used 
to model jet impingement noise. 

4. An estimate of jet impingement noise is made. We conclude 
that the impingement noise is due primarily to acceleration 
of turbulent eddies in the curved stagnation point flow. 
The "shear noise" source is amplified by a factor of 3 and 
the sound power is amplified by 'a factor of 9 or about 
10 DB. The additional 6 DB due to imaging gives a total 
of about 15 DB. These estimates are the order of magnitude 
of Preisser and Block (Ref. 32). 

D. SECTION V - EXCITATION OF A FLUID FLOW BY SOUND 

1. It is shown that the corotating vortex pair can be excited 
or de-excited by an incident acoustic field. The excita- 
tion is a maximum when the incident acoustic frequency is 
approximately twice the rotational frequency of the pair. 
Amplification factors of 4 to 8 have been calculated. 

2. The simple excitation model can qualitatively explain many 
of the experimental observations with excited jets. 
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